Conservation Moorings to Protect Eelgrass Habitat

A Cooperative Habitat Protection Partnership

Tay Evans
Massachusetts Division of Marine Fisheries
February 2009
Conservation moorings to protect eelgrass habitat

I. Impacts of moorings on seagrass

II. Traditional vs. Conservation mooring systems

III. Cooperative Habitat Protection Partnerships (CHPPs)

IV. Conservation mooring demonstration project – monitoring design
Impacts of traditional moorings on eelgrass habitat

- **Direct impacts**
 - chain scour
 - concrete anchor blocks or dragged mushroom

- **Indirect impacts**
 - increased turbidity from chain scour
 - reduced light penetration
Mooring impact studies

- **Walker et al. 1989 - Effect of boat moorings on seagrass beds near Perth, Western Australia**
 - Moorings produce circular scours 3-300m²
 - Posidonia or Amphibolis spp.
 - Increase in edge, vulnerable to further erosion and “blow outs”
 - Detritus collected in depressions
 - After removal of moorings pioneer Holophila recolonized in 6-8 months - change in spp composition, meadow forming spp not observed to recolonize

- **Hastings et al. 1995 - Seagrass loss associated with boat moorings at Rottnest Island, Western Australia**
 - Exposed edge of seagrass has doubled from 1941 to 1992 in Thomson Bay
 - Differences in impacts are related to a site’s exposure and sediment characteristics

- **Montefalcone et al. 2008 - BACI design reveals the decline of the seagrass *Posidonia oceanica* induced by anchoring**
 - Population but not individual level effects
 - Anchoring chain resulted in decline in shoot density and increase in large dead areas
 - Called for adoption of “seagrass friendly” moorings
Conservation moorings

Conventional Chain-type Mooring

The Hazelett Marine Elastic Mooring

Source: Hazelett
Conservation moorings

Source: Hazelett Marine
Conservation moorings

- **Current application**
 - Pro-active municipal and private use
 - Permit condition for new projects adjacent to eelgrass or other resource areas to reduce turbidity
 - Permit condition for re-licensing moorings within eelgrass
 - Mitigation alternative for project impacts to eelgrass beds

- But in order to recommend conservation moorings, we need to know quantitatively if they are effective at protecting eelgrass...
Cooperative Habitat Protection Partnerships (CHPPs)

- Emphasize non-regulatory approaches to protect fish habitat
- Establish federal, state, local, & NGO partnerships to protect coastal and marine habitat
- Promote awareness and stewardship of fish habitat
- Provide technical assistance and small grants
Cooperative Habitat Protection Partnerships (CHPPs)

- **Galveston Bay, TX**
 - Living shorelines to protect fish habitat

- **Great South Bay, NY**
 - Promoting community stewardship through shellfish aquaculture

- **Little Campbell Creek, AK**
 - Stream assessment for watershed planning

- **Vineyard Haven, MA**
 - Promoting the use of conservation moorings and assessment of their effectiveness at protecting eelgrass habitat
CHPPs: Massachusetts

- Developed Federal, State and Local partnership (NMFS, EPA, MACZM, MADMF, TNC)
- Funding and development of education/interpretive sign
- Purchased two moorings to be placed in Vineyard Haven Harbor to test recovery (demonstration project)
- Looking for additional sites
- Monitoring plan under development
CHPPs: Vineyard Haven, MA

Photo source: Jeff Lefebvre
CHPPs: Vineyard Haven, MA

Study Questions:

1) Will eelgrass grow back into a mooring scar once the mooring is replaced with a conservation mooring? How long will it take?

2) What will happen to density, % cover and canopy height in and near the scar?

3) What impacts will a conservation mooring have on eelgrass if placed in an unimpacted bed?

Management questions:

1) Can conservation moorings protect eelgrass?

2) Should we continue to recommend conservation moorings as a permit condition?

3) Can conservation moorings be considered as mitigation for eelgrass impacts?
Demonstration Project: Study Design

BEFORE, AFTER, CONTROL, IMPACT
Demonstration Project: Study Design

- BACI or BA
- Annual monitoring at same time of year
 - 3 years
- 50 meter transect with 25 at the center of the scar
- Measure scar diameter

- Collect density, % cover and canopy ht within the scar and at intervals along the transect using a 1m² quadrat with density counted from ¼ meter square area.
Expected results

- Decrease in diameter of scar with Conservation moorings
- Increase in eelgrass density, %cover within and near the original scar
- Canopy height may take longest to recover - reach equivalence with reference site
- Results may depend on characteristics of the mooring field (how dense are moorings, how many are traditional vs. conservation,
- Sediment type, wave and current energy and tidal regime
Stuff to think about

- How can we incorporate other sites?
- Does anyone know of a candidate site?
- Are these methods simple enough to be required as standard monitoring in a permit condition?
- Will basic before and after methods provide the quantitative info needed?
Further information

CHPPS
Christopher Boelke
NOAA/NMFS Northeast
978-281-9131
Christopher.boelke@noaa.gov

Kathi Rodrigues
CHPPS Program Coordinator
978-281-9324
Kathi.rodrigues@noaa.gov

Conservation Moorings
Jeff Lefebvre
Hazelett Marine
802-863-6376
www.hazelettmarine.com

Seaflex, Inc.
Telephone: (310) 548 9100
Fax: (321) 406-0612
seaflex.inc@seaflex.net
CHPPS mooring project:
Phil Colarusso (EPA)
Chris Boelke (NOAA/NMFS)
Tony Wilber (CZM)

Thank you!